If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-30x=29=0
We move all terms to the left:
x^2-30x-(29)=0
a = 1; b = -30; c = -29;
Δ = b2-4ac
Δ = -302-4·1·(-29)
Δ = 1016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1016}=\sqrt{4*254}=\sqrt{4}*\sqrt{254}=2\sqrt{254}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{254}}{2*1}=\frac{30-2\sqrt{254}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{254}}{2*1}=\frac{30+2\sqrt{254}}{2} $
| 3x-1+85+36=180 | | 3p+3p=-6 | | 6(x+7)+6=8x-2(x-6) | | 5x+x=2x | | 5x+1x=12x+8 | | 18p-15p-3p+p=16 | | 5/3x=7/8 | | 5r+9=45-r | | 3x+61+53=180 | | -5(-4v+5)=-10+5v | | 5(r+7)=-4(r-2) | | 12+2n=7n-3 | | 17r+14=122-19r | | z-z+6z=18 | | 6x+1-7x=-(x+6) | | 3r+2=10-r | | 44=t-51 | | 8h-5=11h-114 | | 5t+3t-t-2t+4t=18 | | x/5-10=3/6 | | 8x+9=5x-24 | | h-15=58 | | 40+5x+4+36=180 | | 6h-h-2h-h=12 | | 6(m-3)-7(1-m)=14 | | 2(x+3)=4x+4-2x+2 | | -11x-19=-96 | | 3(x-5)=-45 | | 2x+84+3x+1=180 | | -6=12x/6 | | -16a=-288 | | 2x-2=2(x+9) |